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The problem of the imbedding of a solid, thin, well-lubricated cutting edge in 
a half-space of rigidly plastic hardening material under plane strain conditions 
is considered in a linear formulation. It is assumed that translational hardening 
[l] occurs. The problem turns out to be kinematically determinate. 

Directing the coordinate axes as shown in Fig. 1, a. let us write the equation of the 

Fig. 1, 

cutting edge surface as 

where 6 is a small dimensionless parameter, 
and f is a sufficiently smooth function, At 
the initial instant the material occupies the 

9 
half-space .r < 0. Reversing the motion, 
let us consider the cutting edge fixed, and 

the medium to be displaced progressively 
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upward along the z axis with some constant velocity uO. As a result of imbedding the 
cutting edge, the plastic material buckles [warps] to form a certain surface whose equ- 

ation is 5 - h = 6cp (!/I (2) 

where h is the depth of the imbedding (Fig. 1, a). 
To solve the problem, let us use the equilibrium equation, the plasticity condition, 

and th$ relationships of the associated plastic flow law 

(3) 

[(a, - ce,) - (a, - ce,)la + 4 (T - ce,J2 = 4k2 (CY k =const) (4) 

8, + ey = 0, 2Ex E 
x2, 

= 
(csr - ce,) - (5 

II 
- ce,) z - cc au 

(5) 

Here e,, ey, exy are the strain components, e,, eV, cry are the strain rate components. 
The boundary conditions will be examined below. 

Considering the strains small, we have 

sex ae 
Ey = + 9 

aexu 
e,= at9 

-- &I - at (6) 
as I as 1 as 

2 ex = ax , e,,= J, 
aY 

e,,, = - 2 ( -$+*) (7) 

a: as 
u=J, 

at 
u=-$ (8) 

where sz, sy are the components of the displacement vector of points of the medium, 
and U, v are components of the displacement velocity. 

Let us examine linearization in the small parameter 6 

a, = SXO + 66 ’ r,**., v = v” + 6v’ (9) 

The zero approximation corresponds to the unperturbed state, i. e., to imbedding of a 
cutting edge of zero thickness (6 = 0). The surface of the medium is hence not defor- 
med (z = h). The first approximation (9) becomes 

0, = 66,‘, oy = - 2k + 6q,‘, 7 = iw 

e, = 6e,‘, e, = i3e’y, e XU = 6e:, (10) 

u = u” + 6u’, v = 6v’ (u” = conqt # 0) 

Linearizing (4), (5), we obtain 

6,V’ -‘By’ = c (e,’ - e,‘) (11) 

(12) 

Let us consider the kinematic boundary conditions. The first is that the velocities on 
the cutting edge surface are directed along the tangent to the cutting edge, therefore 

v-n=0 (43) 

v = (u’ + 6~‘) i + hv’j, n,($Z!$Li-j 

where n is the unit vector normal to the cutting edge surface. To higher order accuracy, 
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we obtain from (13) 

v’ = uo * for y = 0 
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(14) 
The boundary of the plastic material in the zeroth approximation is the line 2 - 9 = 
0, and in the first approximation is the line 

x-y+6y=o (15) 

where y is some sufficiently smooth function. The unit vector normal to the boundary 
is to first order accuracy Y = + (i - j) (16) 

Since the motion has been reversed and the cutting edge is fixed, the normal veloc- 

ity on the boundary of the plastic material equals no / 1/z to second order accuracy. 

Therefore ILo 
v.y= - 

I/a 
for x-y+&=0 (17) 

From (17), (16) and the second relationship in (13) we obtain 

u’ - v’ = 0 for 5 -Y = 0 (18) 

The solution of (12) with the boundary conditions (14) and (18) is 

n! = u’ = uo at ‘;, Y) 
(1% 

i.e., the velocity field is such as if the medium were ideally plastic p]. 
Let us consider the displacement vector of points of the medium 

s = s,i + svj 

It follows from (8). (10) and (19) that 
f t 

s, = 
!, 
'udt = h+ s/p- y), s2,= vdt=6f(z-y) 

s (20) 
0 0 

According to (7) (20) and (10) the strains are 

e, I_ - - et4 
I = ai (;; y) ( e’ _ 0 

xv - (21) 

Because of (21) the relationship (11) becomes 

QXt - au’ = 2c w (5 - Y) 
ax (22) 

Upon imbedding the cutting edge, points on the surface of the medium acquire the 
displacements s, (h, y)? sv (h, Y), hence, points with the coordinates s, (h, y), 
l! + sy (h, y)should lie on the buckled surface of the medium. Substituting these co- 

ordinates into (2), and linearizing, we obtain 

rp (Y) = f @ - $7 o<Y<h (23) 

Therefore, the buckled surface of plastic material coincides with the shape of the sur- 
face of the imbedded cutting edge. 

Let us turn to the determination of the stress field. Because of (10) and (22) the equi- 

librium equations (3) become 
a5 ’ 

I at’ 

Substituting az 
i. - = 

a 9 
0, 
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0,’ = 25 
aY ’ 

‘tL_c!_ 
l3X 

into (24), we arrive at the wave equation whose general solution is 

(25) 

~=Q~(J:+Y)-QQ~(~--_)+ -g_ (x + y) al ‘“,; !I) (26) 

where QI and Qz are arbitrary functions. Differentiating (26) we have in conformity 
with (25) 

a’ x- - q1 (z _t y) + q2 (.ze - y) + +- a/ ‘“,I y) - + (z + y) a? (a”,;- y) 

7’ = -q~(z+zJ)+qa(X-g)- + at(;;y) - f(~+~)~~A (27) 
ql (2 + Y) = dQ, (II: + Y) / 8x9 qz (x - Y) = aQ2 (X - y) / as 

The functions qr and q2 are determined from the boundary conditions for the stresses, 
which require that there are no tangential stresses on the surface of the smooth cutting 

edge, and the buckled surface of the material is stress-free. 

According to p], the linearized boundary conditions are 

for y=O, O,(x<h 

a,’ = 0, ‘6’ = _ 2h_ af (h - Y) 
ay for 

Using the boundary conditions (28), we have from (27) 

- q1 (5) + q2 (x) = + * + J$ 5 p $ 

q1 (h + y) + q2 (I2 - y) = - + af ‘“,, y, + 

x=h, O<y<h 

- ql (h + Y) + qz (h - y) = + a’ ‘52 ‘) + + (h -k y) “f ;- ‘) + 
a/ (h - Y) -t 21~ ax , 0s~ S’h 

Let us introduce the notation 

h-_y=E, O,(gsh h+y=q, h<q<‘h 

Then from the last two relations in (29) we obtain 

q2(~)=$(2h-~)~+ x:w, o<g<h (30) 

ql(ll)= - (,l; -++) ai(2;q-q) , hGrG2h (31) 

From (30) and the first relationship in (29) we have 

q1 (Q =c (h-E)w - (k + +) 9, O&c<h (32) 

Let us write (31) and (32) governing the function 91 as 

Ql('l) = 
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In conformity with (33) the plastic zone consists of two domains in which the stresses 

have different analytical expressions. For the domain OBC (Fig. 1, b), we obtain from 

the first relationship in (33), and (22) 

For the domain ABC, we find from (27) (36), the second relationship in (33) and (22) 

The equation of the line BC is 5 $ y = h. As is seen from (34) and (35), the stresses 
are continuous on this line. For an ideally plastic medium c = 0 in (34) and (35). 

The influence of inertial forces [3] can be taken into account in the problem consid- 

ered. 
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